Ragiv:Von koch 6 etapes.svg

Se testwiki
Jump to navigation Jump to search
Ragiv rigik (ragiv in fomät: SVG, magodaziöbs 600 × 174, gretot: 2 KB)

Ragiv at kömon de Wikimedia Commons e kanon pagebön fa proyegs votik. Bepenot su pad bepenota ragiva onik pajonon dono.

Plän brefik

Bepenam
English: von Koch snowflake curve after 6 steps (4,097 points); initially created with Scilab, transformed into SVG by pstoedit, layout by Inkscape. New version was created by a text editor.
Français : Courbe du flocon de neige de von Koch après 6 étapes (4,097 points) ; initialement créé avec Scilab, transformé en SVG avec pstoedit, mis en forme avec Inkscape. La nouvelle version a été faite avec un éditeur de texte.
Dät
Fon Vobot okik
Lautan Christophe Dang Ngoc Chan (cdang)
Däl
(Dönugebön nünedi at)
GFDL
Other versions Image:Von koch 1 etape.svg, Image:Von koch 2 etapes.svg, Image:Von koch 3 etapes.svg, Image:Von koch 4 etapes.svg, Image:Von koch 5 etapes.svg, Image:Von koch 6 etapes.svg, Image:VonKoch.svg
SVG genesis
InfoField
 The SVG code is valid.
 This map was created with a text editor.

Scilab source

English: English version by default.
Français : Version française, si les préférences de votre compte sont réglées (voir Special:Preferences).


Iterative source code

// ******************************
// *                            *
// * "Snowflake" von Koch curve *
// *                            *
// ******************************

clear;
clf;

// **************
// * constants *
// **************

n = 6;
// number of steps 
// limited to 9 (262 145 points), otherwise the stacksize must be changed
// 6 steps (4 097 points) are enough for a good rendering
N = 4^n+1; // amount of points
sin_soixante = sqrt(3)/2; // sin(60°)
l = 1; // length of the initial line (arbitrary unit)

// ******************
// * initialisation *
// ******************

ycourbe = [zeros(1,N)];
ycourbe1 = ycourbe;

// *************
// * functions *
// *************

function [xx, yy] = etape(x, y)
  
  // from a line [(x(1),y(1)) ; (x(2),y(2))]
  // make the line [(xx(1),yy(1)) ; (xx(2),yy(2)) ; (xx(3),yy(3))]
  // x and y are 2-cells tables, the ends of the basis line
  // xx and yy are 3-cells tables
  // the edges of the equilateral triangle
  
  xu = (x(2)-x(1))/3;
  yu = (y(2)-y(1))/3;
  // third of the basis line vector
  
  xv = 0.5*xu - sin_soixante*yu;
  yv = sin_soixante*xu + 0.5*yu;
  // vector turned by +60°
  
  xx(1) = x(1)+xu; yy(1) = y(1)+yu;
  xx(3) = x(2)-xu; yy(3) = y(2)-yu;
  
  xx(2) = xx(1) + xv;
  yy(2) = yy(1) + yv;  
endfunction

function [xkoch, ykoch] = vonkoch(x, y, n)
  // builds the curve
  // initialisation
  xkoch = x;
  ykoch = y;
  xkoch1 = x;
  ykoch1 = y;
  for i=1:n
    jmax = 4^(i-1);
    // number of lines at the beginning of the step i
    for j=1:jmax/2+1
      // we work with two points which indices are j and j+1 (line #j)
      // thanks t the symmetry, we work with a half curve
      decalage = (j-1)*4; 
      // the new points shift the next points by this offset
      x_init = xkoch(j:j+1);
      y_init = ykoch(j:j+1);
      // line #j
      [x_trans, y_trans] = etape(x_init,y_init);
      // transformed line
      xkoch1(decalage+1) = x_init(1); xkoch1(decalage+5) = x_init(2);
      ykoch1(decalage+1) = y_init(1); ykoch1(decalage+5) = y_init(2);
      for k=1:3
        xkoch1(k+decalage+1) = x_trans(k);
        ykoch1(k+decalage+1) = y_trans(k);
        // values put in the global vector
      end
    end
    xkoch = xkoch1; ykoch = ykoch1;
  end
  
  for i=1:4^n
    ykoch(N-i+1) = ykoch(i);
    xkoch(N-i+1) = l-xkoch(i); 
    // 2nd half-curve
  end
endfunction

// ****************
// * main program *
// ****************

xcourbe(2) = l;
[xcourbe,ycourbe] = vonkoch(xcourbe,ycourbe,n);

// drawing the curve

xpoly(xcourbe,ycourbe)
isoview(0,l,0,l*sin_soixante/3)

The following code can be added to directly generate the file (the SVG export was not implemented at the time the file was created).

// saving the file

name = "von_koch_"+string(n)+"_steps.svg";
xs2svg(0, name)

Recursive source code

The code is more compact but the execution is slower, and does not generate the table of values.

//============================================================================
// name: von_koch.sce
// author: Christophe Dang Ngoc Chan
// date of creation: 2012-10-23
// dates of modification: 
//    2013-07-08: quotes ' -> "
//    2013-07-2: vectorisation of the calculations
//----------------------------------------------------------------------------
// version of Scilab: 5.3.1
// required Atoms modules: aucun
//----------------------------------------------------------------------------
// Objective: draws the von Koch's "snowflake"
// Inputs: none (parameters are hard coded)
// Outputs: graphical window with a curve; SVG file
//============================================================================

clear;
clf;

// *************
// * constants *
// **************

n = 6; 
// number of steps 
// limited to 9 (262 145 points), otherwise the stacksize must be changed
// 6 steps (4 097 points) are enough for a good rendering
sin_soixante = sqrt(3)/2; // sin(60°)
l = 1;
// length of the initial line (arbitrary unit)

// ******************
// * initialisation *
// ******************



// *************
// * functions *
// *************

function [] = vonkoch(A, B, i)
    u = (B - A)/3 ; // third of the AB vector
    v = [0.5*u(1) - sin_soixante*u(2) ; sin_soixante*u(1) + 0.5*u(2)] ;
    // vector turned by +60°
    C = A + u ;
    D = C + v ;
    E = B - u ;
    // points of the line
    if i == 1 then
        // drawing the smallest segments
        x = [A(1) ; C(1) ; D(1) ; E(1) ; B(1) ];
        y = [A(2) ; C(2) ; D(2) ; E(2) ; B(2) ];
        xpoly(x, y, "lines")
    else
        j = i - 1 ;
        vonkoch(A, C, j);
        vonkoch(C, D, j);
        vonkoch(D, E, j);
        vonkoch(E, B, j);
        // recursive call
    end
endfunction

// ****************
// * main program *
// ****************

beginning = [0;0] ;
ending = [l;0] ;
vonkoch(beginning, ending, n)

isoview(0,l,0,sin_soixante*l)

// Saving the file

name = "von_koch_"+string(n)+"_steps.svg" ;
xs2svg(0, name)

Dälastad

I, the copyright holder of this work, hereby publish it under the following licenses:
GNU head Däl pagevon ad kopiedön, seagivön e/u votükön dokümi at ma Dälazöt ad Dokümam Libik: GNU, Fomam: 1.2 u nulikum fa el Free Software Foundation (Stitod: Nünömaprograms libik); nen diläds nevotükovik, nen vödems tegapada balid, e leigo nen vödems tegapada lätik. Kopied dälazöta pekeninon in diläd: Dälazöt ad Dokümam Libik: GNU panemöl.
w:en:Creative Commons
dut paköl ön mod ot
Nüned at pegebidükon bai dälazöt: ‚Creative Commons’ Attribution-Share Alike 3.0 Unported.
Binol libik:
  • gevön ad kobädadalab – kopiedön, pakön e lovegivön voboti
  • votabevobön – lönedükön voboti
Bai stips sököl:
  • dut – Mutol nunön lautanagitätanüni pötöfik, gevön yümi lä dälazöt e mäkön, üf votükams pädunons. Dalol dunön osi ön mod suemovik alik, ab no ön mod alseimik ut, kel tikodükon, äsif gitätan bai dälazöt lobülon-la oli u gebi olik.
  • paköl ön mod ot – If votabevobol, votafomol u lölöfükol materi, mutol pakön keblünotis olik asä rigädikis bai stips ela same or compatible license.
This licensing tag was added to this file as part of the GFDL licensing update.
Dalol välön dälazöti ma plüd ola.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts Linglänapük

copyright status Linglänapük

copyrighted Linglänapük

inception Linglänapük

29 yunul 2006

source of file Linglänapük

Jenotem ragiva

Välolös däti/timi ad logön ragivi soäsä äbinon ün tim at.

Dät/TimMagodilMafotsGebanKüpet
anuik12:22, 2018 febul 21idMagodil fomama tü 12:22, 2018 febul 21id600 × 174 (2 KB)wikimediacommons>Cdangeven values and indentations

Pad sököl gebon nünedi at: